

Kinetic Equations

Text of the Exercises

– 13.05.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let f be a continuous function on \mathbb{R} (or \mathbb{R}_+). Assume in addition that $\lim_{|x| \rightarrow +\infty} f(x) = 0$. Prove that f is uniformly continuous on \mathbb{R} (or \mathbb{R}_+).

Hint: One may rely on the Heine-Cantor theorem, stating that any continuous function f defined between two metric spaces E and F is uniformly continuous if E is a compact set.

Exercise 2

Let $r < r'$ be two positive real numbers. Define the function:

$$\Delta_t(r, r') = f(t, r) - f(t, r'), \quad (1)$$

where f is a solution of the Boltzmann equation:

$$\partial_t f + L(f) f = J(f). \quad (2)$$

Assume that f satisfies

$$0 \leq f(t, r) \leq \frac{c}{(1+r)^k} \quad (3)$$

for all $(t, r) \in \mathbb{R}_+^2$, with $k > 6$, and where

$$J(f)(t, r) = 4 \int_0^{+\infty} \int_0^{+\infty} f(t, u) f(t, v) G(r, u, v) u v d u d v, \quad (4)$$

$$G(r, u, v) = \begin{cases} 0 & \text{if } u^2 + v^2 \leq r^2, \\ 1 & \text{if } u \geq r, v \geq r, \\ \frac{v}{r} & \text{if } u \geq r, v \leq r, \\ \frac{u}{r} & \text{if } u \leq r, v \geq r, \\ \frac{\sqrt{u^2 + v^2 - r^2}}{r} & \text{if } u^2 + v^2 \geq r^2, u \leq r, v \leq r, \end{cases} \quad (5)$$

$$L(f)(t, r) = \int_0^r \left(2r + \frac{2u^2}{3r} \right) f(t, u) u^2 d u + \int_r^{+\infty} \left(2u + \frac{2r^2}{3u} \right) f(t, u) u^2 d u. \quad (6)$$

(i) Prove that Δ_t solves the differential equation:

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') = \quad (7)$$

$$= J(f)(t, r) - J(f)(t, r') + f(t, r') (L(f)(t, r') - L(f)(t, r)). \quad (8)$$

(ii) Prove that there exists a positive number $\rho = \rho(t, r, r') \in (r, r')$ such that (7) can be rewritten as

$$\partial_t \Delta_t(r, r') + L(f)(t, r) \Delta_t(r, r') = \quad (9)$$

$$= (r' - r) (f(t, r') \partial_r L(f)(t, \rho) - \partial_r J(f)(t, \rho)). \quad (10)$$

Hint: Introduce a suitable function in order to apply the Mean Value Theorem.

(iii) Proof (and justify carefully) that

$$\partial_r L(f)(t, r) = \int_0^r \left(2 - \frac{2u^2}{3r^2} \right) u^2 f(t, u) du + \frac{4r}{3} \int_0^{+\infty} u f(t, u) du \quad (11)$$

and

$$\partial_r J(f)(t, r) = - \frac{8}{r^2} \left(\int_0^r u^2 f(t, u) du \right) \left(\int_r^{+\infty} v f(t, v) dv \right) \quad (12)$$

$$- \frac{4}{r^2} \int_0^r u f(t, u) \int_{\sqrt{r^2-u^2}}^r \frac{u^2 + v^2}{\sqrt{u^2 + v^2 - r^2}} v f(t, v) dv du. \quad (13)$$

(iv) Prove that the absolute values of the partial derivatives $|\partial_r L(f)|$ and $|\partial_r J(f)|$ can be bounded respectively by two constants $M_1, M_2 > 0$ that do not depend on t and r .

Hint: To control the second term of $\partial_r J(f)$, one can prove and use that

$$f(u) f(v) \leq \frac{c^2}{\left(1 + \frac{r}{\sqrt{2}}\right)^k}. \quad (14)$$

in the domain of the second integral.

(v) Using the uniform controls on $|\partial_r L(f)|$ and $|\partial_r J(f)|$, prove that for all $(t, r) \in \mathbb{R}_+^2$:

$$|\Delta_t(r, r')| \leq e^{-\int_0^t L(f)(\tau, r) d\tau} |\Delta_0(r, r')| \quad (15)$$

$$+ \int_0^t e^{-\int_s^t L(f)(\tau, r) d\tau} |r' - r| (M_1 c + M_2) ds. \quad (16)$$

(vi) Taking for granted that there exists a constant $k > 0$ such that

$$L(f)(t, r) \geq k \quad (17)$$

for all $(t, r) \in \mathbb{R}_+^2$, deduce from (15) that for all $(t, r) \in \mathbb{R}_+^2$ we have:

$$|\Delta_t(r, r')| \leq |f_0(t, r) - f_0(t, r')| + |r' - r| \frac{M_1 c + M_2}{k}. \quad (18)$$

(vii) Use the previous point to prove the uniform continuity in r (uniformly in t) of the solutions of the Boltzmann equation.

Hint: Use the result of the first exercise.